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Abstract— Recently, there have been numerous advances in
the development of payload and power constrained lightweight
Micro Aerial Vehicles (MAVs). As these robots aspire for high-
speed autonomous flights in complex dynamic environments,
robust scene understanding at long-range becomes critical.
The problem is heavily characterized by either the limitations
imposed by sensor capabilities for geometry-based methods,
or the need for large-amounts of manually annotated training
data required by data-driven methods. This motivates the need
to build systems that have the capability to alleviate these
problems by exploiting the complimentary strengths of both
geometry and data-driven methods. In this paper, we take a step
in this direction and propose a generic framework for adaptive
scene segmentation using self-supervised online learning. We
present this in the context of vision-based autonomous MAV
flight, and demonstrate the efficacy of our proposed system
through extensive experiments on benchmark datasets and real-
world field tests.

I. INTRODUCTION

Micro Aerial Vehicles have built a formidable résumé
by making themselves useful in a number of important
applications, from disaster scene surveillance and package
delivery to robots used in aerial imaging, architecture and
construction. The most important benefit of using such
lightweight MAVs is that it allows the capability to fly at high
speeds in space-constrained environments. However, in order
to function in such unstructured environments with complete
autonomy, it is essential that they are able to see and interpret
the scene, and navigate robustly.

In recent years, autonomous capabilities of resource-
constrained autonomous aerial vehicles have seen consid-
erable progress [1]. However, the sensor characteristics of
typically used active and passive range sensors on such
agile MAVs severely limit the range at which reliable 3D
perception can be done. For a typical MAV, this range
is usually in the order of 10 ∼ 20m; at longer distances,
range data becomes too sparse or noisy for reliable scene
understanding from geometry. This presents a challenge, as
it makes the system inherently myopic.

In contrast, humans effortlessly navigate through most en-
vironments - observing, understanding and planning around
distant obstacles even in new, previously unseen environ-
ments. Illumination changes, parallax, scale ambiguity - none
of these affect our ability to perceive our environment and
strategically plan decisions based on only visual information.
Such human visual abilities are not solely due to better stereo
perception; rather, humans are excellent at reasoning from
monocular images. Therefore, in this work we are interested
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Fig. 1. Near-to-far paradigm. Reliable range information is only available
in the near-range, where as appearance information is available even at
far-range. We want to exploit the relationship between these disparate
modalities, to build a more holistic perception system.

in methods for extending the look-ahead distance of percep-
tion systems (See Fig. 1) beyond where geometry can be
used, by learning to reason from contextual information in
monocular imagery.

The problem of visual recognition has been well studied
in general [2]. Recently, learning-based methods have proven
to be more competitive than traditional geometry-based
methods on solving complex vision tasks, including image-
based scene segmentation [3]. However, beyond benchmarks
and new end-to-end learning applications, they have yet
to become the go-to solution for vision-based autonomous
navigation. This can be attributed to several reasons: First,
vision algorithms have to contend with continuously evolv-
ing, unstructured sensor data during long-term operations.
As a result, the performance of data-driven methods do not
necessarily translate to real-world scenarios [4]. In particular,
the problem aggravates for far-away scenes where the visual
appearance is dependent on the locale (including the time
of day and viewing angle) and is not easily generalized.
Second, most learning methods rely on strongly annotated
pixel-accurate data that is highly time-consuming to collect,
and often even infeasible. Lastly, the resource-constrained
budget of MAVs do not allow for real-time deployment of
computationally intense state-of-the-art methods. It is the
above considerations that motivate our contribution.

In this paper, we advocate that continuous online learning
of scene segmentation would allow the system to constantly
adapt to its local, and avoids the need to learn a universal
scene classifier. This requires a method to automatically gen-
erate large amounts of training labels in real-time. Therefore,
as proxy, we propose to exploit readily available geometric-
cues from the near-range data to generate segmentation labels
in real-time, which can then be used to adaptively train
the long-range classifier online. Learning from such self-
supervision would sidestep the annotation cost to scale up
learning performance, and mitigate the challenges of learning
algorithms towards long-range perception. We call this self-
supervision ability as near-to-far learning.
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II. RELATED WORK

Our work addresses an issue that has received attention
in various communities. In particular, similar related work
can be found in the literature for autonomous self-driving
cars, where the need for faster driving motivated similar
approaches that attempted to extend the appearance of the
road out to longer ranges [5], [6]. Other approaches have
used learning-based methods to map traversability informa-
tion to color histograms, textured pixels or geometric point
clouds [7], [8], [9]. Another interesting method for extending
the range of perception that has been studied in literature
involves using overhead imagery in combination with local
data [10]. All the above approaches either relied on strong
priors [11], had assumptions on vehicle kinematics [12], or
used fairly simple features and classifiers [13] that do not
generalize well to changing environments.

Recently, neural-networks based deep learning methods
have achieved human-level performance in the task of scene
understanding [14], [15], with increased adoption in real-
world autonomous systems [16]. Furthermore, there has also
been a growing interest in exploiting end-to-end frameworks;
such methods argue against learning mid-level perceptual
representations, and propose to directly regress to control
commands [17]. However, learning such end-to-end frame-
works require considerable amount of training data. This
reliance on full supervision is a major limitation on the
scalability of these methods to robotics applications [18].
In contrast, weakly- or unsupervised training methods [19],
[20] side-step the need for large amounts of labelled data, by
leveraging a limited set of related annotations for training.
While this line of research has shown potential, they are
currently still outperformed by fully supervised methods.
In the paper, we advocate for the middle-ground via self-
supervised training.

III. APPROACH

Near-to-Far learning is a self-supervised learning paradigm
that uses visual representations from estimated near-range
geometric cues, and thereby learns to reason about far-
range scenes. In this section, we describe our proposed
approach for scene segmentation using this near-to-far learn-
ing paradigm. Fig. 2 provides a schematic overview of the
proposed framework, which is explained below.

A. Self-supervision from Geometry

Our system takes as input a RGB image, a registered
depth map, which can be obtained either using an active or
passive range sensor, and the estimated pose of the vehicle.
We segment the near-range 3D information into obstacle and
free-space regions based on the typical application of ground-
plane estimation. Ground-plane estimation entails finding the
largest planar region in the 3D scene. Assuming the free-
space in front of the MAV is locally flat, it is assumed that
this plane corresponds locally to the ground. Any points that
are outliers with respect to the current ground plane model
are then distinguished and assumed to be obstacles.

Given a point xw on the ground plane in the Euclidean
coordinates, referenced to an arbitrary frame of reference, a
plane in this space can be parametrized by a vector cT

wxw = 1.
It can be shown that under the projective transformation of a
pinhole camera model, every such ground plane corresponds
to a linear model in image coordinates and disparity [8], and
can be written as:

α0x+α1y+α3 = d (1)

where (x,y) are the image coordinates of the pixel with the
observed disparity d. Given enough number of points on the
ground, it is possible to estimate the model parameters in a
robust least squares sense using RANSAC.

Once the ground plane has been estimated using the above
described method, we use it to segment each pixel for which
there is a valid depth information as either obstacle or free-
space. This is accomplished using a simple threshold on the
residual of the fit for each observation, i.e. the ith pixel is
labeled ground if |α1xi +α2yi +α3−di| ≤ dg (where dg is a
constant threshold), and is labeled an obstacle if the residual
exceeds another threshold. This near-range segmentation is
then used as a self-supervised training set for the appearance-
based learning algorithm.

B. Image-based Scene Segmentation

The problem of learning far-range scene segmentation
from appearance can be defined as associating each pixel
of an input image to one of the semantic classes. Here, we
reduce the semantic scene understanding problem to learn-
ing a two-class classification: obstacle and free-space. This
is the minimum classification required by an autonomous
navigation system onboard an MAV to plan collision-free
trajectories. This approach can easily be extended to tackle
multi-class problems, so as to provide more semantically rich
outputs if required.

Inspired by the recent progress with deep learning, we
approach the problem with a CNN that can be trained end-
to-end to predict a map of class-labels. Neural network
models based-on Fully Convolutional Network [3] or SegNet
[21], have shown exceptional performance on pixel-level seg-
mentation tasks. However, most of these networks typically
employ a VGG-16 [22] architecture (or similar), which is a
very large model, originally designed for multi-class classifi-
cation. These networks have huge numbers of parameters and
long inference times, making them infeasable for robotics
applications [23], which require processing images in real-
time on low-latency embedded devices.

In this work, we advocate that reducing the computational
burden of semantic segmentation is essential towards making
them feasible for deployment on embedded systems for real-
world robotics applications. Thus, we design a network based
on the E-Net architecture [24], that is optimized for both fast
inference and high accuracy. E-Net introduces a deep convo-
lutional encoder-decoder model with a bottleneck structure,
motivated by ResNets [25], to build an efficient network
architecture that is 18x faster, has 79x less parameters but
still achieves similar accuracy to prior models.
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Fig. 2. Schematic overview of the near-to-far scene segmentation approach. Geometric information from the near-range via ground plane estimation is used
to generate self-supervised training labels in real-time. These labels are then used to adaptively train a classifier for appearance-based scene segmentation.

The network architecture consists of encoder (initial and
stage 1−3) and decoder segments (stage 4−5) with initial,
down-sample, up-sample, and bottleneck modules. The en-
coder maps the input to a low resolution representation, while
the decoder maps the low resolution feature maps to high-
resolution segmentation output. The initial layer consists of
a 3x3 convolutional layer. In parallel to this, a max-pooling
layer outputs 3 feature-maps - one for each color channel
of an RGB image. The outputs of these layers are then
concatenated, making 16 feature-maps. Rest of the network
consists of bottleneck modules.

The bottleneck module (as shown in Fig. 3) has an archi-
tecture of a single main branch and a separated branch with
3 convolutional filters: a 1x1 projection for dimensionality
reduction, a main convolutional layer (conv) and a 1x1
projection. The conv layer is either a regular, dilated or
asymmetric convolution. Further, between all convolutions, a
batch normalization and a PReLU activation layer is placed,
and spatial dropout layer is included for regularization in
the bottleneck modules. If the bottleneck is down-sampling,
a max-pooling layer is added to the main branch, the 1x1
projection is replaced with a 2x2 convolution with stride of
2 in both dimensions. Max-pooling is replaced with max
unpooling in the decoder, and zero-padding is replaced with
spatial convolution without bias. We refer readers to [24] for
more details regarding the design choices of the network.

C. Online Training

Let us represent our network model as f (x,γ), that maps
an input image x to the target segmentation. The model is
described by the network parameters γ and is learned online
by minimizing its error output for an instance xi given an
output ground-truth label yi:

γ = argmin
γ

N

∑
i=1

L( f (xi,γ),yi) (2)

where N is the self-supervised training set generated from
near-range geometry-based segmentation, and L is the cross-
entropy (softmax) loss. During inference, the softmax is
replaced by an argmax function, so as to provide a single

output per pixel. The outputs of the network are scores for
each of the learned categories.

Training a neural network typically requires a large
amount of data samples for convergence of the parameters.
However, several strategies have been adopted in literature
to handle this. One of the popular methods being to initialize
the network parameters with a network trained on a larger
generic dataset in an unsupervised manner [26]; to apply it
to a new task, one can simply fine-tune the last layers of the
network. This exploits the observation that these pre-trained
networks are a compact and yet rich representation of the
images in general. We perform training in a similar multi-
stage fashion.

In the offline step, we initialized the encoder part of the
network with pre-trained weights from a generic dataset (dif-
ferent from the test dataset). The decoder part is initialized
using Xavier initialization, and fine-tuned online in real-time
by back-propagation using a stochastic gradient descent in
a sliding window fashion, where each mini-batch consists
of the last N frames. Furthermore, to improve the runtime
efficiency of the network, we modified the network hyper-
parameters; used higher learning rate, from 1e−10 to 1e−9 and
lower momentum of 0.90 instead of 0.99. We also changed
the fixed learning rate (Lr) with a poly-learning policy

Lr = L(1− i/maxi)
p (3)

where L is the base learning rate, i is the learning step and
p is the power index.

The proposed modifications of network parameters makes
our approach more run-time efficient. From such a reduction,
one might expect a drop in segmentation accuracy; however,
it is to be noted that there is a inherent trade-off between
segmentation quality and run-time that needs to be optimized
for real-world applications. Our current work is not meant
to offer an exhaustive test on optimizing the network archi-
tecture or the hyper parameters of the training process. We
acknowledge the fact that our results may be improved by
investigating that more properly, but the focus in this paper
is to show the feasibility of online self-supervised near-to-far
learning paradigm in the context of scene segmentation.
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Fig. 3. E-Net modules used in our network. max: maxpooling layer
with non-overlapping 2x2 windows, up: upsample layer by a factor of 2,
conv: either a regular, dilated, or asymmetric convolution layer, bn: batch
normalization, regularizer:spatial dropout, 1x1 with down or up arrow: 1x1
convolution to reduce or expand channels.

IV. EXPERIMENTS AND RESULTS

In this section we analyze the qualitative and quantitative
performance of our proposed method on benchmark datasets,
and demonstrate its efficacy through real-world flight exper-
iments on a MAV.

A. Performance on Benchmark Datasets

Datasets: Accurately measuring scene segmentation per-
formance is a challenging task. Ground truth labels for far-
range scene is difficult and tedious to create, particularly in
natural unstructured terrain, and running the entire system
enough times, and over enough courses, to statistically show
improved performance in the context of MAVs is extremely
time consuming. Furthermore, at the time of writing this
paper, the authors were not aware of any real-world large-
scale publicly available MAV datasets with dense annotations
for scene segmentation. Recently, high-fidelity simulators
[27] have been proposed as a proxy to real-world datasets,
to enable development and testing of autonomous MAVs.
However, in our experience visual learning using simulations
do not directly translate to real-world performance.

To overcome these issues, we take advantage of the
recent developments in large scale datasets for semantic
scene understanding for self-driving cars and autonomous
ground vehicles. We use 2 datasets, Freiburg Forest [28] and
Cityscapes [29], containing diverse environments ranging
from urban environments to outdoor natural landscapes.
Freiburg forest dataset contains multimodal images of forest
environments and varying conditions such as as low-lighting,
snow, glare and motion blur, and semantic labels of 6 classes:
Sky, Obstacles, Road, Grass, Vegetation, Background and
Void. We use RGB and depth modalities as the input to
our system and combine the class labels into a yield a
binary obstacle vs free-space category; for example, grass
and road belongs to free-space, and the rest as obstacles. In
comparison, the Cityscapes dataset contains RGB and depth
images from over 50 cities with varying seasons, time of the
day and weather conditions. We only use near-range depth
data (≤15m), to simulate the scenario of low-SWaP sensors
on a MAV.

Baseline: To evaluate the system’s capability in real-
world applications, we envision scenarios where an end-
user would typically train a network on publicly available
datasets and use it on new tasks or systems, without the

TABLE I
NEURAL NETWORK ARCHITECTURE

Name Type Output Size

Initial 16x256x256

bottleneck1.0 downsampling 64x128x128
4x bottleneck1.x 64x128x128

bottleneck2.0 downsampling 128x64x64
bottleneck2.1 128x64x64
bottleneck2.2 diluted 2 128x64x64
bottleneck2.3 asymmetric 5 128x64x64
bottleneck2.4 dilated 4 128x64x64
bottleneck2.5 128x64x64
bottleneck2.6 dilated 8 128x64x64
bottleneck2.7 asymmetric 5 128x64x64
bottleneck2.8 diluted 16 128x64x64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64x128x128
bottleneck4.1 64x128x128
bottleneck4.2 64x128x128

bottleneck5.0 upsampling 16x256x256
bottleneck5.1 upsampling 16x256x256

fullconv 2x512x512

TABLE II
COMPARISON TO GROUND TRUTH

Test
Dataset

Training
Dataset Method IoU AP

Freiburg Cityscapes FCN-8s 76.98 87.36
Freiburg Cityscapes SegNet 72.12 82.90

Freiburg Cityscapes E-Net 71.37 81.21

Freiburg Cityscapes Ours (E-Net+Online) 87.11 91.12

Cityscape Freiburg FCN-8s 71.87 77.31
Cityscape Freiburg SegNet 69.43 74.67

Cityscape Freiburg E-Net 68.25 72.11

Cityscape Freiburg Ours (E-Net+online) 80.36 82.21

need to get dense annotation again. To emulate this, we
train and test our system on similar but unrelated datasets
- for e.g. train on Cityscapes and test on Freiburg Forest,
and vice versa. As baseline, we compare the performance
of our approach to standard semantic segmentation methods
(FCN-8s, SegNet and E-Net) trained in a supervised manner,
with no online fine-tuning. For our proposed approach, we
train only the encoder segment of the network, initialize the
decoder weights using Xavier initialization and fine-tune it
using online updates in real-time.

Quantitative Comparison to Ground Truth: We bench-
mark against standard image segmentation metrics such as
Mean Intersection-over-Union (IoU) and Average precision
(AP) for both the above datasets. Table II shows the per-
formance of our proposed algorithm on the above metrics,
and Fig. 4 illustrates some of the corresponding qualitative
results. Table III shows the runtime performance of the
different methods on a Nvidia Jetson TX1 processor.
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Image Ground Truth Results Image Ground Truth Results

Fig. 4. Qualitative results scene segmentation on (Row-1) Cityscapes and (Row-2) Freiburg Forest datasets. Note: Red is obstacle, blue is free-space.

Fig. 5. Qualitative results of near-to-far scene segmentation from MAV
flight tests in different indoor and outdoor environments.(Col. 1) Input RGB
image, (Col. 2) Near-range geometry-based segmentation overlayed on the
input image; this is further used for online training of the classifier (Col.
3) Overlayed segmentation mask for the baseline algorithm (without online
learning component) and (Col. 4) Overlayed segmentation mask for the
proposed approach. Note: Red is obstacle, blue is free-space.

Our method achieves an IoU of 87.11 and 80.36 on the
Freiburg forest and Cityscapes datasets, respectively; outper-
forming the other approaches by a significant margin. This
improvement can be attributed to the highly representational
features adaptively learned by our model in real-time. Com-
putationally, the geometry-based near-range segmentation
module runs at ∼10 hz, and the image-based segmentation
module runs at ∼1 hz; this involves both the inference, and
the online update step. These run-time are sufficient for our
application of high-speed autonomous navigation, where we
envision a slower long-range strategic planning layer running
in tandem with a faster near-range geometry-based reactive
avoidance system.

B. Performance on Real-world MAV Flights

Setup: We evaluate our proposed approach through real-
world flights tests in a varied set of indoor and outdoor
environments, ranging from untextured building corridors
to natural cluttered scenes. We use a modified version of
the Asctec Hummingbird quad-copter platform. Our flight
computer is a Nvidia Jetson TX1 board, which incorporates
a quad-core ARM processor and embedded GPU with 256
Cuda cores. Onboard, we have a downward looking camera

TABLE III
RUNTIME PERFORMANCE ON NVIDIA JETSON TX1

Method Runtime (fps)

FCN-8s 0.43
SegNet 1.32
E-Net 19.71
Ours (E-Net+online) 1.12

Fig. 6. Performance of our approach on Cityscapes dataset as a function
of near-range depth information.

for state-estimation, and a front-facing Intel RealSense R200
structured light sensor that provides us with visual and range
data. Tensorflow deep learning library with CuDNN backend
was used for our implementation, and all the processing
is done onboard. During the experiments, the MAV was
manually flown by a pilot, while the near-to-far segmentation
module was run in real-time as software-in-the-loop. We
decoupled the segmentation module from the control and
planning layer, so as to independently evaluate the perfor-
mance of the proposed approach. Closing the loop with
planning and control to show system-wide advantage of the
proposed algorithm is beyond the scope of this paper, and
will be addressed in future work.

Qualitative Results: Fig. 5 shows the qualitative results
from some of the flight experiments. Similar to performance
evaluation on benchmark datasets, we compare our pro-
posed approach to a system trained only in the supervised
manner, without near-to-far online component. We used the
Cityscapes dataset for the off-line supervised training. It can
be seen that using self-supervised learning in a continuous
fashion performs better, especially in scenarios where the
environment changes dynamically. In the first example, we
notice that as soon as the person appears in near-field, the
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perception algorithm is able to adapt its learning to classify
people as potential obstacles; this is completely missed in the
supervised scenario. Similar behavior is observed in outdoor
environments, in the context of narrow tree trunks as shown
in the third row. Further, the ability of the near-to-far scene
segmentation to learn from its current ’local’ information is
evident in the last example where it can successfully segment
the planar surface, even though they have a considerably
different texture and visual appearance.

C. Sensitivity Analysis

Performance vs. Depth-range: Our algorithm is highly
dependent on the fidelity of the self-supervised training, since
sparse depth information may only be representative for only
a part of the scene. Thus we analyze the performance of
our algorithm as a function of the range of self-labelled
data available. As shown in Fig. 6, the performance of the
algorithm gets better to a certain range but degraded beyond
that. This can be explained due to the fact that the ground-
plane assumptions no longer hold at far-range, and thus the
labels are more noisy.

V. CONCLUSION

In this paper, we introduced the concept of near-to-
far perception system - an online self-supervised learning
based approach to enable long-range scene segmentation,
and support this claim through qualitative and quantitative
results. We studied this in the context of autonomous flights
for resource constrained MAVs. However, our approach and
findings equally apply to other autonomous systems with
similar sensing modalities. Finally with this work we hope
to bridge the gap between geometry-based and data-driven
approaches, by taking a step in the direction of building
systems that exploit the complimentary benefits of both
world. In ongoing and future work, we plan to close the
loop on perception and planning, so as to allow end-to-end
system evaluation.
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